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Abstract. The combined electronic and nuclear motion during a predissociation process is studied in a
model system. The latter consists of an electron and an ion which are allowed to move in one dimension
and interact with each other and two fixed ions via screened Coulomb interactions. The fragmentation
dynamics is illustrated in terms of the temporal changes of electronic and nuclear densities. In this way it
is possible to reveal the influence of non–adiabatic coupling, not only on the nuclear wave–packet motion,
but also on the transient electronic structure.

PACS. 31.50.Gh Surface crossings, non-adiabatic couplings – 31.70.Hq Time-dependent phenomena: ex-
citation and relaxation processes, and reaction rates

1 Introduction

A famous example for the breakdown of the Born–
Oppenheimer adiabatic approximation [1] is the electronic
predissociation of molecules [2]. Conventionally, two the-
oretical frameworks are used to describe such a decay
mechanism. Within the so–called diabatic picture [3] this
process occurs when a bound (diabatic) potential energy
curve V d

n is intersected by another potential V d
m, the latter

being repulsive. Including off-diagonal potential elements
leads to a coupling of the bound–state manifold to the
continuum, so that the molecule decays into fragments.
This effect manifests itself in the energy dependence of
observables such as absorption spectra [4] or scattering
cross sections [5,6] in the form of resonances. In the case
of a small diabatic coupling (the ‘diabatic limit’), the de-
cay occurs with a long lifetime of the quasi–bound com-
plex which, in turn, means that the resonances have a
small spectral width. The adiabatic picture of a predisso-
ciation provides a different approach for a physical descrip-
tion. The adiabatic potential curves V a

n (R) are uniquely
obtained from the solution of the stationary Schrödinger
equation for fixed nuclear geometry R. In the case where
non–adiabatic effects are large, an adiabatic curve exhibits
an avoided crossing (diatomic molecule) [7] or a conical
intersection (polyatomic molecule) [8] with the potential
surface of another electronic state. The interaction is pro-
vided by kinetic coupling elements containing derivatives
of the electronic wave function with respect to the nuclear
coordinates. The case of a strong coupling, corresponding
to a large probability to change the adiabatic electronic
state, is identical to the case of a weak diabatic coupling
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which often leads to confusion if the couplings and the
zeroth–order picture of the description are not accurately
defined.

Within the adiabatic picture, the quantum mechanics
of an electronic predissociation process is described most
illustratively in terms of a multi–component nuclear wave–
packet dynamics. As a textbook example one may regard
the NaI molecule which was investigated by Zewail and co–
workers using femtosecond time–resolved spectroscopy [9].
In this molecule, the electronic ground state exhibits an
avoided crossing with an excited state. Upon femtosecond
pulse–excitation from the ground to the excited state, a vi-
brational wave packet is prepared and moves outward until
the crossing region is reached. Here, the packet splits into
two parts: a first one remains in the upper state, perform-
ing a quasi–bound vibrational motion, whereas a second
part crosses to the ground state, leading to fragmentation
into Na and I atoms [10]. In the latter particular example,
the nuclear dynamics is accompanied by a charge–transfer
process which has been nicely illustrated by Grønager and
Henriksen [11]. It is clear that, during an electronic pre-
dissociation, substantial changes of the electron density
are to be expected. Unfortunately, a complete quantum
description including both the nuclear and electronic de-
grees of freedom is — up to date — only possible within
very limited models. For a review on different methods to
approach the problem of combined electronic and nuclear
motion, see e.g. reference [12].

One possibility to tackle the description of molecules
beyond adiabatic approximations is that of reduced di-
mensionality. For example, Bandrauk and co–workers have
studied laser-excitation processes for systems within a
linear configuration [13–15]. In a recent study we have
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Fig. 1. Particle configuration of the model system. Two fixed
ions with charges Z1 and Z3 are separated by a distance of
10 Å. An electron with coordinate x and an ion (Z2) with
coordinate R are allowed to move in one dimension.

treated a linear H2 molecule interacting with strong laser
fields [16]. Also, efforts have been undertaken to develop
a two–component time–dependent density functional the-
ory for the treatment of molecules in laser fields [17]. In
the present paper we aim at the description of an elec-
tronic predissociation process employing a model which
originates in the work of Shin and Metiu [18,19] and was
investigated by us in terms of electronic-vibrational den-
sity dynamics [20] and its modification by the interaction
with external fields [21]. The main purpose is to illustrate
the nucleus mediated transient electronic structure dur-
ing the molecular fragmentation. The model and its the-
oretical treatment is described in Section 2. In Section 3,
various adiabatic potential curves and the corresponding
electronic eigenfunctions are discussed. The quantum dy-
namics is described in Section 4 which also contains a short
summary.

2 Theory and model

Following former work [18,19], we define a model including
three ions and an electron arranged in one spatial dimen-
sion. Here, two ions (referred to as ion (1) and ion (3), in
what follows) are separated by a fixed distance L, whereas
the third ion (2) with coordinate R and the electron with
coordinate x are allowed to move. The distances R, x re-
fer to the origin of the coordinate system which is located
in the middle between the ions (1) and (3). The linear
particle configuration and the associated coordinates are
illustrated in Figure 1.

The Hamiltonian of the system is (atomic units are
employed):

H = −1
2
∂2

∂x2
− 1

2m
∂2

∂R2
+ V (x,R), (1)

where the potential energy is parameterized in the form

V (x,R) =
Z1Z2

|L/2 +R|
+ Z2Z3

erf(|L/2 −R|/R23)
|L/2 −R| − Z1

erf(|L/2 + x|/R1e)
|L/2 + x|

− Z2
erf(|R − x|/R2e)

|R− x| − Z3
erf(|L/2 − x|/R3e)

|L/2 − x| . (2)

The repulsion of ions (1) and (3) is omitted since it repre-
sents an additive constant to the Hamiltonian (1). The

first term in the expression for the potential describes
the bare Coulomb repulsion of ions (1) and (2) whereas
a screened Coulomb interaction between ions (2) and (3)
is parameterized by an error function erf (second term).
The same functional form is employed for the ion–electron
attraction. The parameters entering into the Hamiltonian
are the mass m, the nuclear charges Zn(n = 1 − 3), the
distance L and the screening radii R23, Rne(n = 1 − 3).

Fixing the nuclear coordinate R, adiabatic potential
curves are calculated as the R–dependent eigenenergies of
the electronic Schrödinger equation

{
−1

2
d2

dx2
+ V (x,R)

}
ϕn(x,R) = V a

n (R) ϕn(x,R), (3)

where ϕn(x,R) are the electronic eigenfunctions in the
electronic state |n〉.

To characterize the dynamics in the system, we numer-
ically integrate the time–dependent Schrödinger equation
with the Hamiltonian (1) using a grid representation of the
wave function ψ(x,R, t) and the propagation method of
Feit and Fleck [22]. From the time–dependent wave func-
tion we calculate the nuclear

ρ(R, t) =
∫
dx |ψ(x,R, t)|2 (4)

and electron density

ρ(x, t) =
∫
dR |ψ(x,R, t)|2. (5)

Furthermore, using the electronic basis functions as de-
fined in equation (3), the nuclear densities within a par-
ticular electronic state |n〉 are obtained by projection:

ρn(R, t) =
∣∣∣∣
∫
dx ϕn(x,R) ψ(x,R, t)

∣∣∣∣
2

. (6)

3 Electronic structure

The functional form of the potential energy (Eq. (2)) al-
lows to modify the particle interaction in a convenient
way. We will now show that, using this parameteriza-
tion, it is possible to generate adiabatic potential energy
curves V a

n (R) for the nuclear motion describing various
generic electronic structures which also occur in diatomic
molecules. In order to restrict the parameter space the
mass of the moving ion is fixed to the hydrogen mass
and the stationary ions (1) and (3) are kept at a dis-
tance of L = 10 Å. The screening radii corresponding to
the electron’s interaction with the fixed ions were set to
R1e = R3e = 1.5 Å. The charges will be allowed to assume
also non–integer numbers, are thus no atomic charges and
have to be interpreted as effective charges.

Figure 2 displays potential curves for the electronic
ground (|0〉) and first excited state (|1〉), calculated for
different parameters. The upper panel (a) contains the
case where the ground–state potential exhibits a double-
minimum structure and the first excited state is separated
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Fig. 2. Adiabatic potential energy curves for the electronic
ground (n = 0) and first excited state (n = 1), calculated
using different parameters entering into the interaction poten-
tial of the model system. Panel (a) shows the case of an elec-
tronic ground state having a double minimum potential and
an energetically separated excited state (Zn = 1, R2e = 1.5 Å,
R23 = 1 Å). The case of a bound ground and dissociative
first excited state is illustrated in panel (b) (Z1 = Z2 = 1,
Z3 = 0.001, R2e = R23 = 1.5 Å). Panel (c) contains curves
where ground and excited state potentials exhibit an avoided
crossing which is typical for a predissociation process (Zn = 1,
R2e = 1.75 Å, R23 = 2.3 Å).

by a larger gap of about 0.5 eV. In calculating the curves,
all charges were set to Zn = 1, the electron-nuclear inter-
action was determined with R2e = 1.5 Å and the nuclear
interaction of ions (2) and (3) contained the parameter
R23 = 1 Å. The plot illustrates a situation where the adi-
abatic approximation between the nuclear and electronic
degree-of-freedom applies. Such a case was investigated
in detail before [18–21] and will thus not be discussed in
what follows.

In order to encounter a situation characterized by a
bound ground state and a dissociative excited state, the
interaction of the ions (2) and (3) has to be diminished.
Therefore we set Z1 = Z2 = 1 and Z3 = 0.001, employing
furthermore R2e = R23 = 1.5 Å. Panel (b) of Figure 2
displays the calculated potential curves which are typical
for a bound-to-free transition upon electronic excitation,
as is already obtained in a simple LCAO-approach to e.g.
the H+

2 molecule using two basis functions.
Regarding panel (c) of Figure 2 (Zn = 1, R2e = 1.75 Å,

R23 = 2.3 Å) we see that the lower and upper adiabatic
potential curve exhibit an avoided crossing around R =
0 Å. Here the lower curve decreases in energy for distances
R larger than R = 0, i.e. the system is not stable. This is
the characteristic situation of an electronic predissociation
where a (diabatic) ‘quasi-bound’ initial state decays via a
coupling to a continuum.
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Fig. 3. Electronic probability densities |ϕn(x, R)|2 for the case
of a bound ground state (n = 0) and a dissociative excited state
(n = 1), see Figure 2, panel (b).

Altogether, Figure 2 documents that within the pa-
rameterization of the potential energy (Eq. (2)), it is
possible to generate adiabatic potential curves which are
generic for ground and excited state configurations be-
longing to a bound-bound, bound-free and quasi-bound
nuclear dynamics.

Let us next take a look at the electronic probabil-
ity densities |ϕn(x,R)|2 as calculated from the electronic
Schrödinger equation (Eq. (3)). The absolute square of
these functions for the bound–free case are displayed in
Figure 3. The figure documents how the electronic prop-
erties of the system vary with the nuclear distance R. In
order to investigate this behavior in more detail, we show
cuts taken for selected values ofR in Figure 4. The ground-
state function for a value of R = −2 Å, which is close
to the potential minimum of the lower adiabatic poten-
tial, resembles a Gaussian localized between the ions (1)
and (2). Upon electronic excitation, the function remains
in the same region of space, but naturally, acquires a node.
For a nuclear position of R = 0 Å, the ground state density
exhibits a double peak structure and in the excited state,
the second maximum is shifted towards larger distances.
These trends continue with increasing values of R and at
R = 4 Å, where the potentials are almost degenerate, one
obtains similar densities in ground and excited state.
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Fig. 4. Cuts through the densities |ϕn(x,R)|2 displayed in
Figure 3 (bound–free). The respective values of the nuclear
coordinate R are given in Å.
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Fig. 5. Electronic probability densities |ϕn(x,R)|2 in the pre-
dissociation case.

What happens in the case of the predissociation (see
Fig. 2, panel (c)) is illustrated in Figure 5. The fig-
ure documents the influence of the non–adiabatic cou-
pling: in the region around R = 0 Å, the character of
the electronic wave functions changes strongly so that
the derivatives of these functions with respect to the nu-
clear coordinate become large and the Born–Oppenheimer
approximation breaks down. The electronic probability
densities are shown for representative values of the nuclear
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Fig. 6. Cuts through the densities |ϕn(x,R)|2 displayed in
Figure 5 (predissociation). The respective values of the nuclear
coordinate R are given in Å.

coordinateR in Figure 6. At the minimum of the lower adi-
abatic curve (R = −2 Å), ground and excited state wave
functions are similar to the bound-free case as discussed
above: the electron is shared between ions (1) and (2).
With increasing value of the nuclear coordinate R, the
densities become more de-localized. If R assumes a value
of 0 Å, that is, in the region where the avoided crossing
of the curves appears, the ground state function exhibits
three maxima indicating that all three ions participate in
the bonding situation (three-center). In the excited state,
the node of the wave function coincides with the location
of ion (2) (x = R = 0 Å). At large R (here R = 4 Å), we
find a similar situation as encountered for R = −2 Å but
now the electronic wave functions are located between the
ions (2) and (3).

4 Time–dependent densities

First we treat the direct dissociation process. Therefore
the parameters were chosen as in the bound-free case lead-
ing to the potential curves displayed in Figure 2, panel (b).
Here the initial state was a Gaussian

ψ(x,R, t = 0) = e−β(R−R0)
2
ϕn(x,R), (7)

with β = 1.06 Å−1 and R0 = −2.5 Å times the electronic
eigenfunctions with n = 1. The wave function at t = 0 can
be imagined to result e.g. from a femtosecond excitation
process originating in another electronic state (for exam-
ple the ground state). A change of the center of the initial
state does not change the dynamical picture as discussed
below. The same applies to the width of the Gaussian. In-
sofar, the here presented case can be regarded as typical.

Starting in the repulsive excited state, the nuclear
density (upper panel in Fig. 7) moves outward until it
reaches the region where an optical potential was used
in the calculation (at distances larger than R = 4 Å)
to continuously remove the outgoing parts of the wave



M. Erdmann et al.: Electronic predissociation: a model study 331

5

10

15

20

25

30

35

40

t [fs]

-4
-2

0
2

4
6R [10-10 m]

ρ(R, t)

5

10

15

20

25

30

35

40

t [fs]

-10

-5

0

5

10x [10-10 m]

ρ(x, t)

Fig. 7. Upper panel: nuclear density dynamics in the case of a
direct dissociation. The lower panel displays the corresponding
time–dependent electron densities.

function [23,24]. The barrier-free fragmentation is accom-
panied by changes in the electronic density, as seen in the
lower panel of the figure. The outward moving nucleus
takes electron density away. However, with equal prob-
ability the electron remains localized close to the fixed
ion (1).

In order to get some insight into the dynamics of
the predissociation process we first analyze the nuclear
dynamics. This is normally done by propagating wave
packets on the diabatic potentials, including a poten-
tial coupling between the different states. Here we regard
the coupled electronic-nuclear motion without involving
the potentials for the nuclear motion. The initial wave
function was of the form given in equation (7) with
β = 2.12 Å−1, R0 = −3.4 Å and contained the electronic
ground state wave function ϕ0(x,R). The initial state
has an average energy which corresponds to the barrier
height in the electronic ground state. A displacement of
the function towards larger values of R results in a lower
predissociation yield, i.e. the packet is trapped in the lower
potential well — at least for the times regarded here. A
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Fig. 8. Electronic predissociation: cuts of the nuclear density
are shown at different time, as indicated.
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Fig. 9. The densities in the ground (left panels) and first
excited (right panels) electronic state are displayed at different
times (predissociation dynamics).

displacement towards smaller distances puts us into the
diabatic limit, where the non-adiabatic transition towards
the higher electronic state occurs with unit probability.
Therefore, the here discussed case represents an example
where predissociation is effective on a short time-scale.

The time–evolution of the nuclear density (Eq. (4)) is
shown in Figure 8. The initially localized Gaussian func-
tion moves towards larger distances and spreads substan-
tially within the first 20 fs. The spreading proceeds and at
40 fs the density is almost totally localized at positive val-
ues of R. At later times, probability density moves inward,
exhibiting a larger maximum around R = 0 Å (80 fs).

Regarding the total nuclear density it is not possible
to decide which electronic states participate in the pre-
dissociation process. Therefore, we regard the projections
ρn(R, t), which are shown in Figure 9. For each time, the
two densities are shown on the same scale but for dif-
ferent times, these scales are chosen differently. Since the
initial wave packet is, by definition, a ground–state func-
tion, the projection ρ0(R, t = 0) is identical to the total
density ρ(R, t = 0), see Figure 8. As is seen in the total
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Fig. 10. Electron density dynamics during the predissociation
process at selected times.

density, the function moves outward until it reaches the
crossing region where the non-adiabatic coupling is effec-
tive (20 fs). Then, a bifurcation occurs so that partly a
ground state dissociation, but also a transition to the ex-
cited state takes place (40 fs). At a time of 60 fs, the ex-
cited state density is reflected at the outer potential wall,
thus exhibiting an oscillatory structure which is caused
by the superposition of inward and outward moving com-
ponents. There is, besides the dissociative part, another
ground state component seen at negative distances, which
corresponds to a flux reflected at the potential barrier. Fi-
nally, at a time of 80 fs, a re-population of the electronic
ground state occurs, but most of the density remains in
the excited state. The dynamics taking place at longer
times proceeds accordingly and is not shown here.

The nuclear wave-packet dynamics for our model sys-
tem is in accordance with the general quantum mechanical
motion taking place on coupled potential energy surfaces.
The advantage here is that we are in the position to si-
multaneously monitor changes of the electron density, i.e.
we might answer our initially posed question of electronic
structural changes during a predissociation process. Fig-
ure 10 contains the electron density for selected times,
as indicated. At a time of 4 fs, where the nucleus is lo-
cated at about R = −3 Å, the function is that of the
electronic ground state (compare Fig. 6). A little later
(20 fs), the mobile ion has reached the coupling region
around R = 0 Å, but still most of the population is in
the n = 0 state. Accordingly, the electron density is dom-
inated by the features of the respective electronic wave
function (Fig. 6, middle left panel). The same holds at
a time of 40 fs where fragmentation has occurred with a
relatively high probability. The electron density at 60 fs
shows a different behavior. At positive values of the elec-
tron coordinate x, the nodal structure of the excited state
electronic wave function becomes visible. Since the radial
wave function has a component in the electronic ground

state localized at negative values ofR (see Fig. 9), the elec-
tron density exhibits another maximum around x = −5 Å
which reflects the ground state electronic wave function.
The lowest panel of Figure 10 shows a function with three
maxima. Here the nuclear components in ground as well
as excited state, are mainly localized in the region around
R = 0 Å (see Fig. 9). By inspection of Figure 6 it is
then clear, that the outer two maxima in ρ(x, t) stem from
the excited state whereas the middle maximum originates
from a contribution from the ground electronic state. This
of course means that the total wave function is strongly
influenced by a non–adiabatic coupling.

To summarize, we have explored a simple model to de-
scribe a coupled electronic and nuclar motion. A particular
form of parameterization of the particle interactions allows
to create different bonding situations in the ground and an
excited electronic state. These situations can be character-
ized by adiabatic potential curves with bound and disso-
ciative character and also exhibiting an avoided crossing.
The quantum dynamics for a direct dissociation involves
a wave packet which directly moves into the exit chan-
nel. Thereby, it transports electron density in a smooth
way. Regarding an electronic predissociation, we demon-
strated how the character of the electron density changes
during fragmentation. Here, the non–adiabatic coupling
mixes properties of ground and excited state electronic
wave function giving rise to a complicated transient elec-
tronic structure of the system.

The model which was used in the present work is very
simple and uses a single electronic and nuclear degree of
freedom and a linear configuration. Nevertheless, we think
that it contains many essentials reflecting a realistic situa-
tion in small molecules. In the future extensions are possi-
ble, e.g. the inclusion of a second electron or nucleus could
provide a deeper understanding of the dynamical features
in systems composed of a few interacting particles.
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